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Abstract
This work introduces the concept of time–frequency map of the phase difference between the cantilever response signal and the

driving signal, calculated with a wavelet cross-correlation technique. The wavelet cross-correlation quantifies the common power

and the relative phase between the response of the cantilever and the exciting driver, yielding “instantaneous” information on the

driver-response phase delay as a function of frequency. These concepts are introduced through the calculation of the response of a

free cantilever subjected to continuous and impulsive excitation over a frequency band.
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Introduction
Atomic force microscopy (AFM) has made important

progresses towards the characterization of material properties at

the nanoscale (elastic constants, force interactions, friction,

molecular interactions, to name only a few) by means of

dynamic techniques that extended the microscope capabilities

well beyond simple topographic measurements [1,2]. Among

the techniques developed in dynamic AFM, multimode excita-

tion and the so called band-excitation methods have been put

forward recently [3-5]. All of these techniques are based on the

frequency, amplitude and phase response around one or more

cantilever oscillation modes when the tip interacts with the

sample surface. The temporal evolution of the amplitude, phase

or frequency response is in many cases a fundamental para-

meter. The implementation of these techniques is based on the

continuous excitation of multiple flexural cantilever modes

[3,4], impulsive cantilever excitation [5] or thermal-noise exci-

tation [6-9].

Thermal noise analysis has been performed, with the aid of

wavelet transforms, to characterize the time–frequency response

of a thermally excited cantilever in dynamic force spectroscopy

[10-12]. In these previous works, the focus was on the time
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evolution of the brownian power spectral density of the tip

when it is in contact with the force field of the sample surface

(e.g., van der Waals, adhesion, Hertz interaction regime).

However, wavelet analysis, in analogy with the classical Fourier

transform, also provides phase information when complex func-

tions are used as a wavelet basis.

The scope of this work is to introduce the idea that a

time–frequency map of the phase difference between the

cantilever response signal and the driving signal can be

extracted with a wavelet cross-correlation (WCC) technique,

based on the inherent phase information residing within the

complex Gabor transform. This analysis has been exploited

principally in the field of meteorology, oceanography and

geophysical studies [13-15]. Since, to the best of our knowl-

edge, there are no examples of WCC used in AFM, we will

illustrate some examples based on the response of a damped

harmonic oscillator, which in many situations is a good model

for an oscillating cantilever, to different kinds of driving forces.

Through the wavelet cross-correlation it is possible to quantify

the power correlation and the relative phase between the

cantilever response and the driving signal under reasonable

assumptions [15]. In the last few years, the investigation of

phase-analysis techniques [16,17] contributed to the under-

standing of energy-dissipation processes and elastic response in

heterogeneous samples, an important topic in biological

research, where the liquid environment is principally of interest.

In liquids the typical cantilever Q-factor ranges from 5 [18] up

to 40, for this reason we will focus our attention on the simula-

tion of low-Q oscillators.

Wavelet cross-correlation
The wavelet transform has shown great potential in various

scientific disciplines, but it is not widespread in the context of

noncontact AFM. This may be due to the absence of discus-

sions of the practical and technical aspects of wavelet analysis

relating to noncontact AFM. This article shows the use of

wavelet cross-correlation by means of two simple but paradig-

matic examples: The continuous and the impulsive band excita-

tion of a free cantilever.

Before introducing the cross-correlation concept, we give a

brief introduction to wavelet transform theory [19]. Wavelet

analysis is based on the projection (convolution) of a discrete

time series f(t) (the signal), where t is the time index, onto a set

of continuous functions Ψs,d(t) derived from the translations and

dilations of a mother wavelet Ψ(t), where

(1)

s and d are real parameters and s > 0. Any set of functions

constructed as in Equation 1 and meeting the fundamental

requirements of zero average, implying that Ψ(t) is an oscil-

lating function, and rapid decay at infinity (technically Ψ(t)

must be continuous and have a compact support; this is called

the admissibility condition), are called wavelets.

The convolution of f(t) with Ψs,d(t), at the scale s and delay d, is

the wavelet transform (WT) of the signal Wf(s,d):

(2)

This is a continuous wavelet transform, because the parameters

s and d vary continuously. The translation parameter d corre-

sponds to time and the dilation parameter s corresponds to

temporal period (or its inverse, frequency). Equation 2 expands

the time series f(t) into a bidimensional parameter space (s,d)

and gives a local measure of the relative resemblance of the

wavelet to the signal.

The complex mother wavelet (also called Gabor wavelet or

Gaussian wavelet) used in this work, as described in [10], is

represented as

where σ controls the amplitude of the Gaussian envelope, and

thus its time–frequency resolution, and η is the carrier

frequency. Since the intrinsic time–frequency resolution in WT

is determined by the wavelet set over which the signal is

expanded, we chose a Gaussian wavelet basis because it is

particularly adapted to follow signals in time, having the least

spread in both the frequency and time domain and thus the best

time–frequency resolution. The temporal parameter t in the

expression of the Gabor wavelet can be regarded as a (dimen-

sionless) discrete index and likewise σ and η are dimensionless

wavelet parameters defining the wavelet shape over the discrete

sampling string. The Gabor wavelet (dimensionless) center

frequency at scale s is given by f = η/(2πs). It is possible to as-

sociate a pseudofrequency F (in Hz) at a scale s by considering

that f is sampled with a time interval T, such that F = f/T. There-

fore, the wavelet dilations set by the scale parameter s are

inversely proportional to the frequency F. In the following

analysis, the dimensionless wavelet parameters are chosen as
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σ = 1 and η = 6. This choice of parameter gives an adequate

balance between time and frequency localization, which in

wavelet analysis are subjected to a classical Heisenberg-like

principle of indetermination (for details see [10]).

Given two time series f(t) and g(t), with wavelet transforms

Wf(s,d) and Wg(s,d), the cross-wavelet spectrum is defined as:

(3)

where * denotes the complex conjugate. Since the cross-correla-

tion coefficients are complex numbers, they can be represented

as Wf(s,d) = |Wf(s,d)|exp(Φf(s,d)). |Wf(s,d)| represents the

wavelet amplitude, Φf(s,d) is the absolute phase. Both

amplitude and phase are relative to the “point” (s,d) in the

frequency–time plane. The cross-wavelet power, |Wfg(s,d)|,

shows regions in time–frequency space where the time series

have a high common power. The relative phase difference

between the two time series (Φf(s,d) = phase of f; Φg(s,d) =

phase of g), can be calculated as:

(4)

where < > represents a smoothing operator. It must be noted

that this definition depends essentially on the action of the

smoothing operator on the various wavelet spectra. The same

situation in found in the definition of optical coherence, see

[20]. For a discussion of this fundamental but rather technical

aspect, see [15,21]. In general terms, a high correlation between

two time series does not necessarily imply that there is any kind

of connection or cause-and-effect relationship. This means that

the time series can have high common power at a given time

and frequency and still being uncorrelated, a problem which

arises also when analyzing the correlation of signals with stan-

dard Fourier transform techniques. As an example, a correla-

tion peak will be always present in the cross correlation

between white noise and a sinusoidal signal, without implying

any causal connection between the two time series. For this

reason it is important to observe the phase relationship: A

strong causal connection implies that the oscillations of the two

series must be phase locked.

Results
As an example to highlight the characteristics of wavelet cross-

correlation, consider the case of a damped cantilever with a dis-

placement z(t) that obeys the classical mass–spring equation

(5)

where f(t) is the driving force per unit mass.

The above equation of motion is integrated numerically with a

free resonant frequency of f0 = ω0/(2π) = 1 MHz, a quality

factor Q = 4 and an excitation driving frequency that linearly

sweeps the frequency interval 0.1f0 < Δf < 0.9f0 in 50 μs

(chirped driver). The driving function is f(t) = zdcos(νd(t)t),

where zd is the driving amplitude and νd(t) the driving

frequency that is linearly chirped: νd(t) = A + Bt, A = 0.1 MHz

and B = 0.016 MHz/μs. Note that the actual instantaneous driver

frequency as a function of time is the time derivative of the total

driver phase, i.e., A + 2Bt. As a consequence, the resonance at f0

is excited when the instantaneous driving frequency sweeps

through f0, which does not coincide with the frequency νd(t). In

Figure 1 the result of the numerical integration is shown and is

compared with the driving frequency, which sweeps through the

frequency band at a constant rate.

Figure 1: The response of a damped harmonic oscillator (red line) to a
chirped driver (blue line) whose frequency is linearly swept in the
interval 0.1f0 < Δf < 0.9f0 over 50 μs, where f0 = ω0/(2π) = 1 MHz is the
resonant frequency of the oscillator. The quality factor is Q = 4 and the
initial conditions are 10 nm amplitude and zero velocity.

The wavelet cross-correlation analysis in Figure 2 evidences

the oscillator phase relationship to the driving frequency

(arrows), simultaneously with the cross-wavelet power spectral

density (represented in the color scale, identifying the time-

series common power), as a function of time and the

instantaneous frequency [22]. The figure shows the magnitude

of the wavelet cross-correlation between the two signals,

Wzf(ω,t) = Wz(ω,t)Wf(ω,t)* and the relative phase (arrows).

Phase arrows indicate the phase relationship of the oscillator to

the driving sinusoid (pointing right: in-phase; left: anti-phase;

up: oscillator lagging behind driver by 90°). The edge effects

are delimited by continuous lines. We note that the representa-

tion in terms of the cross-correlation between the damped
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harmonic oscillator and the chirped driver allows us to capture

more intuitively the evolution of the spectral content of the

cantilever oscillations, in a way that is not possible with a tradi-

tional Fourier transform. However, the utility of this technique

is even more relevant when we deal with impulsive excitation.

Figure 2: Wavelet cross-correlation between the chirped driver and
the response of the damped harmonic oscillator (quality factor Q = 4),
as shown in Figure 1. The wavelet cross-correlation coefficients
(reported in the color scale) evidence the common power between the
two time series in the time–frequency plane. Note that the frequency
axis is represented in octaves as the base-2 logarithm of the ratio of
the oscillator frequency to the resonant frequency. The color scale is
proportional to the wavelet cross-correlation power and is represented
in octaves. The arrows superimposed on the representation given by
the color scale show the local phase difference between the oscillator
and the driver. Arrow pointing right: in-phase; left: anti-phase; up: oscil-
lator lagging behind driver by 90°. The area where edge artifacts may
distort the picture are delimited by a lighter shade.

An excitation signal that can be used in AFM band excitation is

the sinc function. It is defined as

(6)

This function is the continuous inverse Fourier transform of the

rectangular pulse of width 2π and height 1. It is used as a simul-

taneous excitation over a limited frequency range. The time

response of the damped cantilever to a properly scaled sinc

function is shown in Figure 3. The response of the oscillator

starts abruptly from nearly zero deflection with a finite velocity:

A dynamic that is typical of impulsive forces. The wavelet

cross-correlation analysis is shown in Figure 4. The spectral

components have a temporal evolution peaked around the exci-

tation pulse, as expected. To extract information from these

signals, it is interesting to follow the “local” phase difference

between driver and oscillator around the oscillator resonance.

Below resonance the spectral components of the oscillator are

in-phase with the driver, above resonance they are in anti-phase,

and while at resonance they show a phase lag of π/2 with

respect to the spectral components of the driver. It is important

to note that the phase relations just described refer to a

Figure 3: The response of a damped harmonic oscillator (red line,
quality factor Q = 4) to a sinc driver (blue line) with an amplitude of
10 nm and a flat excitation bandwidth up to 2.5 MHz. Initial conditions
are zero amplitude and zero velocity.

Figure 4: Wavelet cross-correlation between the sinc driver and the
response of the damped harmonic oscillator (quality factor Q = 4), as
shown in Figure 3.

frequency band that has been simultaneously excited and

encompasses the resonant frequency.

Although the above description of the spectral phase appears

intuitive, it would not be possible to obtain it by means of a

classical Fourier analysis. If the signal is not stationary, as is the

case in band excitation, the squared magnitude of the Fourier

coefficients measure the average energy contained in a spectral

interval without tracing its effective time evolution. In this case

the phase relative to each spectral component is not “local” in

time, preventing its interpretation in terms of a causality rela-

tionship with a specific perturbing agent.

It is interesting to note that the cross-correlation analysis allows

us to separate those spectral components that are directly influ-

enced by the driver and those relative to the subsequent evolu-

tion of the oscillator response, when the impulsive driver action

has died down. We consider the same excitation as in Figure 3,

but with an oscillator that has a much higher Q-factor, Q = 40.
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Figure 5: The response of a damped harmonic oscillator (red line,
quality factor Q = 40) to a sinc driver (blue line) identical to that speci-
fied in Figure 3.

Figure 6: Wavelet cross-correlation between the sinc driver and the
response of the damped harmonic oscillator (quality factor Q = 40), as
shown in Figure 5.

The time evolution is shown in Figure 5. We note that the initial

displacement is not amplified in proportion to the Q-factor, as

one would have anticipated on the basis of standard resonance

amplification, as can be seen from the comparison with

Figure 3. The higher Q-factor manifests as a response of the

oscillator that now extends over a longer time span, well

beyond the driver pulse. The wavelet cross-correlation is similar

to that seen in Figure 4, because the cross-correlation is zero

when the driver has decayed down and thus independent of the

temporal extension of the oscillator, see Figure 6. In this case

the time extent of the spectral components near resonance is

increased in comparison to Figure 4 due to a less abrupt

damping of the oscillaton motion.

Since the oscillator signal extending beyond the driver pulse

can carry useful information but is not visible in the cross corre-

lation, an artificial signal can be used as a reference. The phase

of the oscillator can be tracked by correlating it with a refer-

ence harmonic signal at the resonant frequency, as we demon-

strate in Figure 7. In this case the oscillator phase is leading that

of the reference by π/2. It is important to note here that the

value of the phase difference depends on the choice of the refer-

ence signal, but its evolution in time can carry information on

the interactions of the oscillator with the environment. The

obvious implication that this analysis mode has on band-excita-

tion techniques is the separation of the cantilever response into

two distinct periods: An initial stage during the active driving

that set the cantilever in motion and a following stage in which

the undriven cantilever decays to a steady state.

Figure 7: Wavelet cross-correlation between a sinusoidal reference
signal at resonance and the damped harmonic oscillator response
(quality factor Q = 40), to a sinc driver, as shown in Figure 5.

Discussion
In this section we would like to comment on how to exploit

WCC and wavelet phase analysis in a practical AFM experi-

ment, discussing the implications for the real cantilever

dynamics as opposed to modeling a harmonic oscillator. A

fundamental feature of wavelet phase analysis consists of

measuring the phase response of the cantilever with respect

to complex excitation signals (band excitations, frequency

sweeps, structured pulses), and displaying the results in the

time–frequency plane, with a resolution set by the Heisenberg

principle, as shown in the simulations reported in Figure 2,

Figure 4, and Figure 6 for a damped harmonic oscillator. This is

in contrast to standard phase measurements, in which the phase

response is mapped with respect to a continuous single-

frequency excitation. A strategy to gain information from

wavelet phase analysis relies on taking a reference “phase

carpet”, corresponding to a free cantilever, for a given excita-

tion signal. This is a time–frequency map of the phase differ-

ence between the cantilever response signal and the driving

signal when the cantilever is not engaged in interaction. Succes-

sive excitation of the interacting cantilever provides the inter-

action “phase carpet”. Subtracting the interacting phase carpet

from its reference, allows us to retrieve the local phase rotation,

that is a function of the tip–surface interaction and the chosen

excitation/driving signal. With this approach the phase rotation

is measured at each frequency that resides within the excited
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band around a cantilever resonance and it is possible to follow

its time evolution. The advantage with respect to single-

frequency techniques is a more robust all-frequency characteri-

zation of the phase rotation and the possibility of connecting

this information with the amplitude variation at each point in

the time–frequency plane. With respect to traditional analysis,

in which the spectral information is extracted with a Fourier

transform, the wavelet representation disentangles the inter-

action spectra in the time domain. The spectral components

acquire an interaction causality that is absent in the Fourier

spectrum, revealing the time succession in which the phase or

the amplitude at a specified frequency has been altered by the

interaction. In certain cases this information may be of great

utility, for example to enable correlation of phase-jumps with

the interaction processes, that usually have time-scales that are a

fraction of the oscillation period. It is foreseen that in similar

cases the wavelet analysis could track dynamics otherwise not

visible in a Fourier spectrum because of the superposition of

spectral contributions generated at different times.

In amplitude-modulation AFM (tapping mode) wavelet analysis

is useful to track the time evolution of the nonlinearities in

tip–surface dynamics. The wavelet analysis allows one to

follow more than a single flexural mode simultaneously [10,11]

and the eventual harmonics due to a nonlinear response, charac-

terizing their time evolution. Regarding the phase response, we

expect that nonlinear interaction will produce phase discontinu-

ities in the WCC between the driving signal and the cantilever

response, whose temporal dynamics should be accessible. As an

example, the spectral response of a cantilever in liquid excited

at its first flexural resonance, and which impacts on a sample, is

controlled by the elastic parameters of the sample and deter-

mines the degree of excitation of the higher flexural modes

[17]. The cantilever spectral distribution upon impact, captured

with wavelet amplitude and phase analysis, is thus a fingerprint

of the material properties. This information can be used, at the

very least, to determine compositional contrast.

A final remark is due concerning the effect of noise (thermal

and environmental noise) on wavelet analysis while processing

data collected under normal AFM operating conditions. One

might expect noise to be a limiting factor when performing

wavelet analysis, due to the fact that the wavelet analyzes the

signals for a shorter time and therefore loses the averaging

effect present in traditional Fourier spectra. Regarding environ-

mental noise, it has been demonstrated that by using only

thermal excitation it is possible to retrieve useful information

from force spectroscopy [11] with a single approach curve

under standard operating conditions. Regarding the thermal

noise, the excitation signals must have amplitudes exceeding

that of the thermal noise, because averaging is limited or absent.

In this case, the choice of the excitation amplitude depends on

the type of cantilever, on its quality factor and on the parame-

ters to be measured. We anticipated that only extremely

low amplitude excitations should have portions of the

time–frequency map rendered useless below the noise floor.

Further (ongoing) studies will be necessary to gain insights into

the limitations of wavelet analysis.

Conclusion
The application of wavelet analysis to interacting cantilevers is

a promising route to the characterization of material properties

on the nanoscale. The wavelet correlation technique allows one

to measure the phase relationship between driver force and

cantilever response in complex excitation schemes. The

complete time–frequency picture of the phase evolution can be

exploited as an important tool to characterize material response

and tip–sample interactions. The wavelet correlation analysis

sets into a different perspective the AFM techniques, which

have been analyzed so far only in terms of Fourier transform.
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